

Introduction to nanophotonics Part 1 : (Light properties, Black-body/Density of states, Quantum theory of light polarization)

Brian Stout

C.L.A.R.T.E / Institut Fresnel, U.M.R. 7249 http://www.fresnel.fr/perso/stout/ Institut Fresnel, CNRS Aix Marseille Université, Domaine Universitaire de Saint Jérôme, 13397 Marseille, France

- Properties of light and light propagation
- Density of states and black-body radiation
- Quantum mechanics of light polarization

Geometric optics approximation - Newton:

 $\lambda \rightarrow 0$

Oblique Wave Through A Simple Twin Lens System

The "propagation" of a wave is can be understood as the "interference" of secondary sources in the wave fronts

Why do the "secondary" waves only propagate in the forward direction ? Meta-surfaces give us an answer !

Both Newton's 'particle model' and Huygens's 'wave model' can explain refraction !

Need a wave theory of light needs to describe diffraction (Grimaldi ~1665)

Screen

Textbook wave diffraction theory

Newton's particle theory of diffraction

Young's double slit experiment demonstrated the Interference of light waves (1801)

Wave interference

Double slit interference "screen view"

Rayleigh-Sommerfeld diffraction theory ~1900

Fresnel (1819), Green's theorem (1828), Kirchhoff (1883)

'Exact' Rayleigh-Sommerfeld formula (acoustics, scalar light, quantum mechanics ?)

$$E(x, y, z) = \frac{1}{i\lambda} \iint_{\Sigma} E(X, Y, 0) \left(1 + \frac{i}{kr}\right) \frac{\exp(ikr)}{r} F(\theta) dX dY$$

$$r = PM = \sqrt{z^2 + (x - X)^2 + (y - Y)^2}$$

$$F(\theta) = \cos \theta = \frac{z}{r}$$

$$k = \frac{2\pi}{\lambda}$$

$$k = \frac{2\pi}{\lambda}$$

$$k = \frac{2\pi}{\lambda}$$

$$k = \frac{2\pi}{\lambda}$$

Green's theorem (1828)

$$\iiint_V (U\Delta G - G\Delta U)d\mathbf{r} = \oiint_S \left(U\frac{\partial G}{\partial n} - G\frac{\partial U}{\partial n}\right)ds$$

Where $\frac{\partial}{\partial n}$ signifies a partial derivative in the outward normal direction at each point on S

$$\Delta U(\boldsymbol{r}) + k^2 U(\boldsymbol{r}) = 0$$

Green functions :

$$\Delta G(\mathbf{r}, \mathbf{r}') + k^2 G(\mathbf{r}, \mathbf{r}') = -\delta^{(3)}(\mathbf{r} - \mathbf{r}')$$

$$G(\mathbf{r}_1, \mathbf{r}_0) = G(|\mathbf{r}_1 - \mathbf{r}_0|) = G(r_{10}) = \frac{e^{ikr_{10}}}{4\pi r_{10}}$$

$$\frac{\partial G(r_{10})}{\partial n} = \cos(\hat{\mathbf{n}}, \hat{\mathbf{r}}_{10}) \left(ik - \frac{1}{r_{10}}\right) \frac{e^{ikr_{10}}}{4\pi r_{10}}$$

Interlude on the scalar Green's function

Homogeneous wave equation : $\Delta U(\mathbf{r}) + k^2 U(\mathbf{r}) = 0$

Inhomogeneous wave equation : $\Delta \psi(\mathbf{r}) + k^2 \psi(\mathbf{r}) = -j(\mathbf{r})$

Green functions :

$$(\Delta + k^2)G(\mathbf{r}, \mathbf{r}') = -\delta^{(3)}(\mathbf{r} - \mathbf{r}')$$

 $G(\boldsymbol{r},\boldsymbol{r}') = (\Delta + k^2)^{-1}$

$$\psi(\boldsymbol{r}) = \int d\boldsymbol{r}' G(\boldsymbol{r}, \boldsymbol{r}') j(\boldsymbol{r}')$$

$$(\Delta + k^2)\psi(\mathbf{r}) = \int d\mathbf{r}'(\Delta + k^2)G(\mathbf{r}, \mathbf{r}')j(\mathbf{r}') = -\int d\mathbf{r}'\delta^{(3)}(\mathbf{r} - \mathbf{r}')j(\mathbf{r}') = -j(\mathbf{r})$$

How do we know/find that the solution to $(\Delta + k^2)G(\mathbf{r}, \mathbf{r}') = -\delta^{(3)}(\mathbf{r} - \mathbf{r}')$

$$Is: G(r_1, r_0) = G(|r_1 - r_0|) = G(r_{10}) = \frac{e^{ikr_{10}}}{4\pi r_{10}}$$
$$\Delta \psi(r, \theta, \phi) = \frac{1}{r} \frac{\partial^2 (r\psi)}{\partial r^2} + \frac{1}{r^2 \sin^2 \theta} \left[\frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{\partial^2 \psi}{\partial \phi^2} \right]$$
$$r_0 \to \mathbf{0}$$
$$r \equiv r_1 - r_0 \qquad G(r, \theta, \phi) = \frac{e^{ikr}}{4\pi r}$$

$$\Delta G(\mathbf{r}) = \frac{1}{r} \frac{\partial^2 \left(r \frac{e^{ikr}}{4\pi r} \right)}{\partial r^2} = \frac{1}{4\pi r} \frac{\partial^2 \left(e^{ikr} \right)}{\partial r^2} = -\frac{k^2 e^{ikr}}{4\pi r} = -k^2 G(\mathbf{r})$$
$$(\Delta + k^2) \frac{e^{ikr}}{4\pi r} = 0 \qquad \mathbf{r} \neq \mathbf{0}$$

Interlude on the scalar Green's function

$$(\Delta + k^2)G(\mathbf{r}) = -\delta^{(3)}(\mathbf{r}) \qquad \qquad G(r) = \frac{e^{ikr}}{4\pi r}$$

Integrate this equation over an infinitely small volume around r = 0

$$\int_{V \to 0} d\mathbf{r} (\Delta + k^2) G(\mathbf{r}) = -\int_{V} d\mathbf{r} (\mathbf{r}) \delta^{(3)} = -1$$
$$\int_{V \to 0} d\mathbf{r} \Delta G(\mathbf{r}) = -1 \qquad \Delta G(\mathbf{r}) = \nabla \cdot \nabla G(\mathbf{r})$$

$$\int_{V \to 0} d\mathbf{r} \nabla \cdot \frac{\mathbf{r}}{4\pi r^3} = 1 ? \qquad r \to 0 \qquad \nabla G(\mathbf{r}) \to -\frac{\mathbf{r}}{4\pi r^3}$$

Approximations to Sommerfeld diffraction formula

$$E(x, y, z) = \frac{1}{i\lambda} \iint_{\Sigma} E(X, Y, 0) \left(1 + \frac{i}{kr}\right) \frac{\exp(ikr)}{r} F(\theta) dX dY$$

$$\cong \frac{1}{i\lambda} \iint_{\Sigma} E(X, Y, 0) \frac{\exp(ikr)}{r} F(\theta) dX dY$$

$$r = PM = \sqrt{z^2 + (x - X)^2 + (y - Y)^2} \cong z \left(1 + \frac{[(x - X)^2 + (y - Y)^2]}{2z^2}\right)$$

Fresnel-Kirchhoff intermediate-field 'approximation' :

$$E(x, y, z) \cong \frac{e^{ikz}}{i\lambda z} \iint_{\Sigma} E(X, Y, 0) \exp\left\{\frac{i\pi}{\lambda z} \left[(x - X)^2 + (y - Y)^2\right]\right\} dXdY$$

$$F(\theta) = \cos \theta = \frac{z}{r}$$
$$k = \frac{2\pi}{\lambda}$$

Fourier Optics

$$E(x, y, z) \cong \frac{e^{ikz}}{i\lambda z} \iint_{\Sigma} E(X, Y, 0) \exp\left\{\frac{ik}{2z}[(x - X)^2 + (y - Y)^2]\right\} dXdY$$

$$E(x, y, z) \cong \frac{e^{ikz}}{i\lambda z} \exp\left[\frac{ik}{2z}(x^2 + y^2)\right] \iint_{\Sigma} E(X, Y, 0) e^{\frac{ik}{2z}(X^2 + Y^2)} e^{\frac{ik}{z}(xX + yY)} dXdY$$

Fresnel-Kirchhoff diffraction :

$$E(x, y, z) \cong C \iint_{\Sigma} E(X, Y) e^{\frac{ik}{2z}(X^2 + Y^2)} e^{-\frac{ik}{z}(xX + yY)} dXdY \propto \mathcal{F} \left\{ E(X, Y) e^{\frac{ik}{2z}(X^2 + Y^2)} \right\}$$
('Parabolic' wavelets)

Fourier Optics in the 'far field'

Fresnel-Kirchhoff diffraction :

$$E(x, y, z) \cong C \iint_{\Sigma} E(X, Y) e^{\frac{ik}{2z} (X^2 + Y^2)} e^{-\frac{ik}{z} (xX + yY)} dX dY \propto \mathcal{F} \left\{ E(X, Y) e^{\frac{ik}{2z} (X^2 + Y^2)} \right\}$$

Fraunhoffer diffraction :
$$e^{\frac{ik}{2z}(X^2+Y^2)} \implies 1 \qquad z \gg X, Y$$

$$E(x, y, z) \cong C \iint_{\Sigma} E(X, Y) dX dY \propto \mathcal{F} \{ E(X, Y) \}$$

$$\mathcal{F} \{ E(X, Y) \} = \iint_{\Sigma} E(X, Y) e^{-\frac{ik}{z} (xX + yY)} dX dY = \iint_{\Sigma} E(X, Y) e^{-ik(X \sin \theta_X + Y \sin \theta_Y)} dX dY$$

$$\sin\theta_X \equiv \frac{X}{z}$$
 $\sin\theta_Y \equiv \frac{Y}{z}$ 15

Newton's Particle theory woefully fails to explain the Poisson-Fresnel-Arago "spot"

$$E(x, y, z) = \frac{e^{ikz}}{i\lambda z} \iint_{\Sigma} E(X, Y, 0) \exp\left\{\frac{i\pi}{\lambda z} \left[(x - X)^2 + (y - Y)^2\right]\right\} dXdY$$

Side views of the 'Poisson' spot 'simulations'

What actually impressed the French academy ?

$$E(x, y, z) = K(z) \iint_{\Sigma} E(X, Y, 0) \exp\left\{\frac{i\pi}{\lambda z} \left[(x - X)^2 + (y - Y)^2\right]\right\} dXdY$$

- Precise measurements
- Rigorous mathematics
- Parameter free theory

 $|E|^2/|E_0|^2$

-0.6

Since Maxwell's 1865 theory light is an electromagnetic wave

Explains most of the physics of the Fresnel Institute ! ("photonics")

It took ~100 years before one began to seriously explain light phenomena in terms of Maxwell equations (why is that ?)

Maxwell's equations of electromagnetism in free space

Maxwell equations in free space:

$$\nabla \cdot \mathbf{E} = 0 \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{c^2 \partial t}$$

$$\epsilon_0 \mu_0 = \frac{1}{c^2}$$

$$\nabla \times \nabla \times E(\mathbf{r},t) = -\frac{\partial^2 E(\mathbf{r},t)}{c^2 \partial t^2}$$

$$\Delta E(\mathbf{r},t) - \frac{\partial^2 E(\mathbf{r},t)}{c^2 \partial t^2} = 0$$

$$\Delta B(\mathbf{r},t) - \frac{\partial^2 B(\mathbf{r},t)}{c^2 \partial t^2} = 0$$

Introduction to Quantum Physics with polarization

$$\left\langle \vec{\mathbf{\Pi}}_{\text{inc}} \right\rangle_{T} = \frac{1}{2} \operatorname{Re} \left\{ \vec{\boldsymbol{E}}_{\text{inc}}^{*} \times \vec{\boldsymbol{H}}_{\text{inc}} \right\} = \frac{1}{2} \sqrt{\frac{\varepsilon_{b}}{\mu_{b}} \frac{\epsilon_{0}}{\mu_{0}}} \left\| \vec{\boldsymbol{E}}_{\text{inc}} \right\|^{2} \vec{\boldsymbol{e}}_{k_{i}} = \frac{\epsilon_{0} c^{2}}{2} \sqrt{\frac{\varepsilon_{b}}{\mu_{b}}} \left\| \vec{\boldsymbol{E}}_{\text{inc}} \right\|^{2} \vec{\boldsymbol{e}}_{k_{i}}$$

https://www.youtube.com/watch?v=GMmhSext9Q8

$$I \propto \left\| \vec{\Pi}_{inc} \cdot \vec{e}_{k_{i}} \right\| \propto \left\| \vec{E}_{inc} \right\|^{2}$$

$$I = I_{R} + I_{T}$$
Energy conservation !
Perfect *loss/ess* polarizer
$$I_{R}$$

$$I_{T}$$

Wave equations remain indispensable to describe light propagation like Fresnel coefficients

Fresnel coefficients plane waves, planar interface,

$$\begin{split} r_{\rm s} &= r_{\perp} = \frac{n_1 \cos\theta_{\rm i} - n_2 \cos\theta_{\rm t}}{n_1 \cos\theta_{\rm i} + n_2 \cos\theta_{\rm t}} \\ t_{\rm s} &= t_{\perp} = \frac{2n_1 \cos\theta_{\rm i}}{n_1 \cos\theta_{\rm i} + n_2 \cos\theta_{\rm t}} \\ r_{\rm p} &= r_{\parallel} = \frac{n_2 \cos\theta_{\rm i} - n_1 \cos\theta_{\rm t}}{n_1 \cos\theta_{\rm t} + n_2 \cos\theta_{\rm i}} \\ t_{\rm p} &= t_{\parallel} = \frac{2n_1 \cos\theta_{\rm i}}{n_1 \cos\theta_{\rm t} + n_2 \cos\theta_{\rm i}} \end{split}$$

$$n(\omega) = \sqrt{\varepsilon_r(\omega)\mu_r(\omega)}$$

Malus Law : Polarizer

https://www.youtube.com/watch?v=-ZUw1qJOfIU

 $I = I_R + I_T = \kappa_R I + \kappa_T I$

Energy conservation !

$$\kappa_R + \kappa_T = 1 \Longrightarrow \begin{cases} \kappa_T = \cos^2 \alpha \\ \kappa_R = \sin^2 \alpha \end{cases}$$

Electric field is a *vector* :

$$\vec{E}_{i} = \vec{E}_{\alpha} = \mathcal{E}(\cos \alpha \, \vec{e}_{V} + \sin \alpha \, \vec{e}_{H}) = \|\vec{E}\|\vec{e}_{\alpha} = \mathcal{E}\vec{e}_{\alpha}$$
$$I \propto \|\vec{E}\|^{2} = |\mathcal{E}|^{2}$$

Basis vectors for electric field polarization

 $\vec{E}_{\alpha} = E\vec{e}_{\alpha}$ $\vec{e}_{\alpha+\frac{\pi}{2}} = \cos\left(\alpha + \frac{\pi}{2}\right)\vec{e}_{V} + \sin\left(\alpha + \frac{\pi}{2}\right)\vec{e}_{H}$ $= -\sin\alpha\vec{e}_{V} + \cos\alpha\vec{e}_{H}$

$$\vec{\boldsymbol{e}}_{\alpha} \cdot \vec{\boldsymbol{e}}_{\alpha} = 1 \qquad \vec{\boldsymbol{e}}_{\alpha + \frac{\pi}{2}} \cdot \vec{\boldsymbol{e}}_{\alpha + \frac{\pi}{2}} = 1 \qquad \vec{\boldsymbol{e}}_{\alpha} \cdot \vec{\boldsymbol{e}}_{\alpha + \frac{\pi}{2}} = \vec{\boldsymbol{e}}_{\alpha + \frac{\pi}{2}} \cdot \vec{\boldsymbol{e}}_{\alpha} = 0$$

 $\vec{e}_{\alpha} = \cos \alpha \vec{e}_{V} + \sin \alpha \vec{e}_{H}$

Measurement influences propagation Multiple polarizers

Polarization \vec{e}_V to \vec{e}_H $T_N = \cos^2 \epsilon \times \cos^2 \epsilon \dots \cos^2 \epsilon$

$$\lim_{\epsilon \to 0} (\cos^2 \epsilon)^N = \lim_{\epsilon \to 0} (\cos^2 \epsilon)^{\frac{\pi}{2\epsilon}} \cong \lim_{\epsilon \to 0} \left(1 - \frac{\epsilon^2}{2} \right)^{\frac{\pi}{2\epsilon}} \cong \lim_{\epsilon \to 0} \left(1 - \frac{\pi}{2\epsilon} \frac{\epsilon^2}{2} \right) = 1$$

Quantum theory got started with light! Black body radiation Planck (1900)

Thermal radiation states, density of states, and Planck's black-body radiation formula

Ultra-violet "catastrophe"

Thermal Radiation : $E_{n_{\ell}} = n_{\ell} \hbar \omega_{\ell}$

Thermal Radiation States of a Single Field Mode (incoherent superposition!)

Density matrix of a mode
$$\ell$$
: $\hat{\rho}_{\ell} = \sum_{n_{\ell}=0}^{\infty} p_{n_{\ell}} |\psi_{n_{\ell}}\rangle \langle \psi_{n_{\ell}}| = \sum_{n_{\ell}=0}^{\infty} p_{n_{\ell}} |n_{\ell}\rangle \langle n_{\ell}|$
Boltzmann probability distribution $p_{n_{\ell,\text{Th}}} = \frac{e^{-\frac{E_{n_{\ell}}}{k_B T}}}{Z_{\ell}}$

 $Z_{\ell} \text{ is chosen such that:} \qquad x \equiv e^{-\frac{\hbar\omega}{k_B T}}$ $\sum_{n=0}^{\infty} p_{n_{\ell}} = \sum_{n=0}^{\infty} \frac{e^{-\frac{E_{n_{\ell}}}{k_B T}}}{Z_{\ell}} = \frac{1}{Z_{\ell}} \sum_{n=0}^{\infty} x^n = 1$ $\implies Z_{\ell} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} = \frac{1}{1-e^{-\frac{\hbar\omega}{k_B T}}}$

26

Useful properties of density matrices:

 $\operatorname{Tr}\{\hat{\rho}\}=1$

Expectation values : $\langle \hat{A} \rangle = \text{tr} \{ \hat{\rho} \hat{A} \} = \text{tr} \{ \rho A \}$

Time evolution (von Neumann equation) :

$$i\hbar\frac{\partial}{\partial t}\hat{\rho} = \left[\hat{H},\hat{\rho}\right]$$

Pure states:
$$\operatorname{tr}\{\rho^2\} = 1$$
 $\operatorname{Ex}: \rho = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $\rho^2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

Ex: $\rho = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$ $\rho^2 = \begin{pmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{4} \end{pmatrix}$ Mixed states $tr\{\rho^2\} < 1$

11

Average thermal mode occupation

Thermal radiation state of a single electromagnetic mode

Attn! : we drop the mode index $\boldsymbol{\ell}$

$$\bar{n}_{\omega} \equiv \langle \hat{n} \rangle = \operatorname{Tr}(\hat{n}\hat{\rho}_{n_{\ell,\mathrm{Th}}}) = \sum_{n=0}^{\infty} np_n = \frac{1}{Z} \sum_{n=0}^{\infty} ne^{-\frac{E_n}{k_B T}} = \frac{1}{Z} \sum_{n=0}^{\infty} ne^{-\frac{n\hbar\omega}{k_B T}} \qquad E_n = n\hbar\omega$$

$$= \frac{1}{Z} \sum_{n=0}^{\infty} n \left(e^{-\frac{\hbar\omega}{k_B T}} \right)^n = \frac{1}{Z} \sum_{n=0}^{\infty} nx^n \qquad x \equiv e^{-\frac{\hbar\omega}{k_B T}} \qquad Z = \sum_{n=0}^{\infty} e^{-\frac{n\hbar\omega}{k_B T}} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

$$= \frac{1}{Z} \sum_{n=0}^{\infty} x \frac{d}{dx} x^n = \frac{1}{Z} x \frac{d}{dx} \sum_{n=0}^{\infty} x^n = \frac{1}{Z} x \frac{d}{dx} \frac{1}{1-x}$$

$$= \frac{1}{Z} \frac{x}{(1-x)^2} = \frac{x}{1-x} = \frac{1}{\frac{1}{x}-1} = \frac{1}{\frac{e^{\frac{\hbar\omega}{k_B T}}-1}} \qquad \overline{n}_{\omega_\ell} = \frac{1}{\frac{e^{\frac{\hbar\omega}{k_B T}}-1}}$$

Bose-Einstein distribution (for photons)

$$\bar{n}_{\omega} = \frac{1}{e^{\hbar \omega/k_B T} - 1}$$

$$\overline{E}_{\omega} = \overline{n}_{\omega} \hbar \omega$$

 \bar{n}_{ω} : average photon number in mode

 \overline{E}_{ω} : Average photon energy $\hbar\omega$: Single photon energy

Planck radiation formula

$$u(\omega)d\omega = \bar{n}_{\omega}\hbar\omega\frac{dN}{d\omega}d\omega\frac{1}{V}$$

 $u(\omega)d\omega$: Energy density in the frequency interval { $\omega, \omega + d\omega$ }

$$\frac{dN}{d\omega}d\omega$$
 : # of states in the frequency interval { $\omega, \omega + d\omega$ }

V volume of the 'box'

....

Density of states in a box : $\frac{dN}{d\omega}$

Planck radiation formula :

$$u(\omega) = \frac{\hbar\omega^3}{\pi^2 c^3} \frac{1}{e^{\hbar\omega/k_B T} - 1}$$

Planck radiation formula vs classical prediction :

$$u(\omega) = \frac{1}{e^{\hbar\omega/k_BT} - 1} \hbar\omega \frac{\omega^2}{\pi^2 c^3} = \frac{\hbar\omega^3}{\pi^2 c^3} \frac{1}{e^{\hbar\omega/k_BT} - 1}$$

Classical prediction for the density of states $u(\omega) \cong \frac{\omega^2}{\pi^2 c^3} k_B T$

Photon fluctuations in black-body radiation :

$$\langle \hat{n}^2 \rangle = \operatorname{Tr}(\hat{n}^2 \hat{\rho}_{n_{\ell, \mathrm{Th}}}) = \sum_{n=0}^{\infty} n^2 p_n = \frac{1}{Z} \sum_{n=0}^{\infty} n^2 e^{-\frac{E_n}{k_B T}} = \frac{1}{Z} \sum_{n=0}^{\infty} n^2 x^n$$

$$= \frac{1}{Z} \sum_{n=0}^{\infty} n^2 x^n = \frac{1}{Z} x \frac{d}{dx} x \frac{d}{dx} \sum_{n=0}^{\infty} x^n = \frac{1}{Z} x \frac{d}{dx} x \frac{d}{dx} \frac{1}{1-x}$$

$$= \frac{1}{Z} x \frac{d}{dx} x (1-x)^{-2} = \frac{1}{Z} [x(1-x)^{-2} + 2x^2(1-x)^{-3}]$$

$$= x(1-x)^{-1} + 2x^2(1-x)^{-2}$$

$$= \frac{1}{\frac{1}{x} - 1} + \frac{2}{\left(\frac{1}{x} - 1\right)^2} = \langle \hat{n} \rangle + 2\langle \hat{n} \rangle^2 \qquad x \equiv e^{-\frac{\hbar\omega}{k_B T}}$$

 $\langle \hat{n}^2 \rangle = \langle \hat{n} \rangle + 2 \langle \hat{n} \rangle^2 = \bar{n}_{\omega} + 2 \bar{n}_{\omega}^2$

Photon fluctuations in black-body radiation :

Light became a particle ? "Lichtquanta"

Photo-electric Effect (Einstein 1905)

Quantum mechanics ? Particles or waves

Quantum mechanics played a key role in the technological developments of the 20th century

But do photons truly exist?

(The semi-classical picture of light can explain blackbody radiation, photo-electric effect, stimulated emission (lasers), ultra-fast photography, ...)

3×10^3 photons

9.3×10^4 photons

1.2×10^4 photons

2.8×10^7 photons

Since the 1980's we know that light obeys quantum mechanical laws! 1-photon sources

(Wave particle duality, entanglement, Bell inequalities, quantum cryptography,...)

True 'Quantum Optics' often requires 1-photon (2-photon) sources, and low temperatures !

P. Grangier G. Roger and A. Aspect

EUROPHYSICS LETTERS

Europhys. Lett., 1 (4), pp. 173-179 (1986)

Is this the second quantum revolution? French version : https://www.youtube.com/watch?v=_kGqkxQo-Tw English version : https://www.youtube.com/watch?v=RSXpeDgqUO4 Alain Aspect : https://www.coursera.org/learn/quantum-optics-single-photon

Interference patterns exist even with true 1-photon wave-packets

Fundamental postulate of quantum mechanics

$$|\psi\rangle = c_1 |\psi_1\rangle + c_2 |\psi_2\rangle + c_3 |\psi_3\rangle + \ldots = \sum_n c_n |\psi_n\rangle$$

$$\langle \psi | = c_1^* \langle \psi_1 | + c_2^* \langle \psi_2 | + c_3^* \langle \psi_3 | + \ldots = \sum_n c_n^* \langle \psi_n |$$

c_n are **complex-valued** coefficients

$$\langle \psi_m | \psi_n \rangle = \delta_{n,m}$$
 $\langle \psi | \psi \rangle = 1$ \longrightarrow $\sum_{n=0}^{\infty} |c_n|^2 = 1$

A nice Youtube video explaining quantum mechanics in the framework of light polarization

https://www.youtube.com/watch?v=-ZUw1qJOflU

Describing 1 photon Dirac `bra' - `ket' notation $\langle \psi_1 | \psi_2 \rangle = \langle \psi_2 | \psi_1 \rangle^*$

In quantum physics states of a system are described by superpositions of abstract `vectors': $|\psi
angle$

$$\begin{array}{l} \text{`Kets':} & \text{`Bras':} \\ \vec{e}_{V} \rightarrow |V\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} & \vec{e}_{H} \rightarrow |H\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} & \langle H| = (0,1) & \langle V| = (1,0) \\ \vec{e}_{H} \cdot \vec{e}_{H} = 1 \rightarrow \langle H|H\rangle = (0,1) \begin{pmatrix} 0\\1 \end{pmatrix} = 1 & \vec{e}_{V} \cdot \vec{e}_{V} = 1 \rightarrow \langle V|V\rangle = (1,0) \begin{pmatrix} 1\\0 \end{pmatrix} = 1 \end{array}$$

$$\vec{\boldsymbol{e}}_{\alpha} \cdot \vec{\boldsymbol{e}}_{\alpha + \frac{\pi}{2}} = \vec{\boldsymbol{e}}_{\alpha + \frac{\pi}{2}} \cdot \vec{\boldsymbol{e}}_{\alpha} = 0 \rightarrow \langle V | H \rangle = (1,0) \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \langle H | V \rangle = (0,1) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$$

Complete basis of a 2-state system :

$$|V\rangle\langle V| + |H\rangle\langle H| = \begin{pmatrix} 1\\0 \end{pmatrix}(1,0) + \begin{pmatrix} 0\\1 \end{pmatrix}(0,1) = \begin{pmatrix} 1&0\\0&0 \end{pmatrix} + \begin{pmatrix} 0&0\\0&1 \end{pmatrix} = \begin{pmatrix} 1&0\\0&1 \end{pmatrix} = \mathbb{I}$$

Alternative basis sets for describing 1 photon states

$$|\alpha\rangle = \cos \alpha |V\rangle + \sin \alpha |H\rangle = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$$
$$|\alpha^{\perp}\rangle = |\alpha + \frac{\pi}{2}\rangle = -\sin \alpha |V\rangle + \cos \alpha |H\rangle = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$$
$$\xrightarrow{\alpha \quad \vec{e}_{\alpha}} \vec{e}_{\alpha} \quad \vec{e}_{H}$$
$$\overrightarrow{e}_{\alpha^{\perp}}$$

Alternative basis sets

$$\langle \alpha | \alpha \rangle = (\cos \alpha, \sin \alpha) {\cos \alpha \choose \sin \alpha} = \cos^2 \alpha + \sin^2 \alpha = 1 \qquad \langle \alpha^{\perp} | \alpha^{\perp} \rangle = \left\langle \alpha + \frac{\pi}{2} | \alpha + \frac{\pi}{2} \right\rangle = 1$$

$$\langle \alpha | \alpha^{\perp} \rangle = (\cos \alpha, \sin \alpha) \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix} = 0$$
 $\langle \alpha^{\perp} | \alpha \rangle = (-\sin \alpha, \cos \alpha) \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix} = 0$

Complete basis of a 2-state system :

$$|\alpha\rangle\langle\alpha| + |\alpha^{\perp}\rangle\langle\alpha^{\perp}| = {\cos \alpha \choose \sin \alpha}(\cos \alpha, \sin \alpha) + {-\sin \alpha \choose \cos \alpha}(-\sin \alpha, \cos \alpha) = {1 \quad 0 \choose 0 \quad 1} = \mathbb{I}$$

Born's rule for single particle wave functions

P(finding ψ_1 given state ψ_2) = $|\langle \psi_1 | \psi_2 \rangle|^2$

 $|\alpha\rangle = \cos \alpha |V\rangle + \sin \alpha |H\rangle = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$

P(finding *V* given state α) = $|\langle V | \alpha \rangle|^2 = \cos^2 \alpha$ *P*(finding *H* given state α) = $|\langle H | \alpha \rangle|^2 = \sin^2 \alpha$

 $|\beta\rangle = \cos\beta |V\rangle + \sin\beta |H\rangle = \begin{pmatrix} \cos\beta\\ \sin\beta \end{pmatrix}$

$$P(\alpha|\beta) = |\langle \alpha|\beta \rangle|^2 = \left| (\cos \alpha, \sin \alpha) \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} \right|^2 = |\cos \alpha \cos \beta + \sin \alpha \sin \beta|^2 = \cos^2(\beta - \alpha)$$

$$P(\alpha^{\perp}|\beta) = |\langle \alpha^{\perp}|\beta \rangle|^{2} = \left| (-\sin\alpha, \cos\alpha) \begin{pmatrix} \cos\beta\\ \sin\beta \end{pmatrix} \right|^{2} = |-\sin\alpha\cos\beta + \cos\alpha\sin\beta|^{2} = \sin^{2}(\beta - \alpha)$$

Superposition with complex coefficients (circular/elliptical polarization)

$$|+\rangle = \frac{1}{\sqrt{2}}(|V\rangle + i|H) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\i \end{pmatrix} \qquad \qquad |-\rangle = \frac{1}{\sqrt{2}}(|V\rangle - i|H) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-i \end{pmatrix}$$

$$\langle +| = \frac{1}{\sqrt{2}} (\langle V| - i \langle H|) = \frac{1}{\sqrt{2}} (1 , -i)$$

$$\langle -| = \frac{1}{\sqrt{2}}(\langle V| + i\langle H|) = \frac{1}{\sqrt{2}}(1, i)$$

4

Complete basis of a 2-state system :

$$|+\rangle\langle+|+|-\rangle\langle-| = \frac{1}{2} \binom{1}{i} (1,-i) + \frac{1}{2} \binom{1}{-i} (1,i) = \binom{1}{0} \binom{1}{1} = \mathbb{I}$$

Two-particle system (Tensor product)

Tensor product :
$$|V\rangle \otimes |V\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ 0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} \\ 0 \\ 0 \end{pmatrix} \equiv |VV\rangle$$

$$|V\rangle \otimes |H\rangle = \frac{1}{2} \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 1\begin{pmatrix} 0\\1\\0 \\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad |H\rangle \otimes |V\rangle = \frac{1}{2} \begin{pmatrix} 0\\1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad |H\rangle \otimes |H\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Arbitrary two-particle state vector : $|\psi\rangle = a|VV\rangle + b|VH\rangle + c|HV\rangle + d|HH\rangle$

Normalization : $\langle \psi | \psi \rangle = 1 \Rightarrow |a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$

Product state : $|\Psi_2\rangle = a|HH\rangle + b|HV\rangle = |H\rangle(C_{\alpha}|H\rangle + S_{\alpha}|V\rangle) = |H\rangle|\alpha\rangle$ $C_{\alpha} = \cos \alpha$, $S_{\alpha} = \sin \alpha$,

Entangled state :
$$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|HH\rangle + |VV\rangle)$$

Prove that $|\Phi^+\rangle$ an Entangled state:

$$\begin{split} |\Phi^{+}\rangle &= \frac{1}{\sqrt{2}} (|HH\rangle + |VV\rangle) \xrightarrow{?} \left(C_{\alpha} |H\rangle + S_{\alpha} |V\rangle \right) \left(C_{\beta} |H\rangle + S_{\beta} |V\rangle \right) \\ &= C_{\alpha} C_{\beta} |HH\rangle + C_{\alpha} S_{\beta} |HV\rangle + S_{\alpha} C_{\beta} |VH\rangle + S_{\alpha} S_{\beta} |VV\rangle \end{split}$$

$$C_{\alpha}C_{\beta} = S_{\alpha}S_{\beta} = \frac{1}{\sqrt{2}} \qquad \qquad C_{\alpha}S_{\beta} = S_{\alpha}C_{\beta} = 0$$

Entangled ? Not entangled ? Normalized ?

$$\begin{split} |\Psi_{1}\rangle &= \frac{1}{2}(|HH\rangle + |HV\rangle + |VH\rangle + |VV\rangle) \\ |\Psi_{2}\rangle &= \frac{1}{2}(|HH\rangle + |HV\rangle + |VH\rangle - |VV\rangle) \\ |\Psi_{4}\rangle &= \cos\theta |HH\rangle + \sin\theta |VV\rangle \\ |\Psi_{3}\rangle &= \frac{1}{2}|HH\rangle + \frac{\sqrt{3}}{2\sqrt{2}}(|VH\rangle + |VV\rangle) \end{split}$$

Entangled ? Not entangled ? Normalized ?

Solution

 $|\Psi_1\rangle = \frac{1}{2}(|HH\rangle + |HV\rangle + |VH\rangle + |VV\rangle) = \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle) \otimes \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle)$ not entangled

$$|\Psi_2\rangle = \frac{1}{2}(|HH\rangle + |HV\rangle + |VH\rangle - |VV\rangle)$$
 entangled

$$|\Psi_3\rangle = \frac{1}{2}|HH\rangle + \frac{\sqrt{3}}{2\sqrt{2}}(|VH\rangle + |VV\rangle)$$
 entangled

 $|\Psi_4\rangle = \cos\theta |HH\rangle + \sin\theta |VV\rangle$, entangled except when $\theta = 0, \frac{\pi}{2}, \pi$,

$$\langle \Psi_1 | \Psi_1 \rangle = \langle \Psi_2 | \Psi_2 \rangle = \langle \Psi_3 | \Psi_3 \rangle = \langle \Psi_4 | \Psi_4 \rangle = 1$$

Entanglement doesn't depend on the basis

Show

$$\frac{1}{\sqrt{2}}(|\alpha\alpha\rangle + |\alpha^{\perp}\alpha^{\perp}\rangle) = \frac{1}{\sqrt{2}}(|HH\rangle + |VV\rangle)$$

Entanglement doesn't depend on the basis

Show

$$\frac{1}{\sqrt{2}}(|\alpha\alpha\rangle + |\alpha^{\perp}\alpha^{\perp}\rangle) = \frac{1}{\sqrt{2}}(|HH\rangle + |VV\rangle)$$

$$\frac{1}{\sqrt{2}}(|\alpha\alpha\rangle + |\alpha^{\perp}\alpha^{\perp}\rangle) = \left[\frac{1}{\sqrt{2}}(C|H\rangle + S|V\rangle)\frac{1}{\sqrt{2}}(C|H\rangle + S|V\rangle) + \frac{1}{\sqrt{2}}(S|H\rangle - C|V\rangle)\frac{1}{\sqrt{2}}(S|H\rangle - C|V\rangle)\right]$$

$$\frac{1}{\sqrt{2}}(|\alpha\alpha\rangle + |\alpha^{\perp}\alpha^{\perp}\rangle) = \frac{1}{\sqrt{2}}[(C^2 + S^2)|HH\rangle + (CS - SC)|HV\rangle + (SC - CS)|VH\rangle + (S^2 + C^2)|VV\rangle]$$
$$= \frac{1}{\sqrt{2}}[|HH\rangle + |VV\rangle]$$

Bell states of maximal entanglement

$$\begin{split} \left| \Phi^{\pm} \right\rangle &= \frac{1}{\sqrt{2}} (\left| 00 \right\rangle \pm \left| 11 \right\rangle) \\ \left| \Psi^{\pm} \right\rangle &= \frac{1}{\sqrt{2}} (\left| 01 \right\rangle \pm \left| 10 \right\rangle) \end{split}$$

For a Bell state (of a 2-particle system), knowledge of the state of 1 particle perfectly determines the state of the other

Subject of the 2022 Nobel Prize in physics, basis for the most popular form of quantum cryptography.